加载中...

点击这里给我发消息

QQ群:417857029

新产品·新技术信息

使用贻贝黏附蛋白制成的新型药物传送黏附剂

来源:specialchem2021年04月19日

阅读次数:

  Pohang University of Science and Technology (POSTEC) Korea University research team has bioengineered a novel adhesive patch platform that can efficiently deliver blood vessel-forming growth factors spatiotemporally using mussel adhesive protein (MAP), a bio-adhesive material that is made from mussels harmless to humans.
  
  The patch can be applied to any shape anyplace and was verified for the regenerations of myocardial infarction and severe skin loss.
  
  Bioglue from MAP
  
  Blood vessels deliver nutrients and oxygen to each organ in our body. They are difficult to completely restore to their original conditions once damaged by myocardial infarction or severe ischemic diseases. This is because various angiogenic growth factors must be applied sequentially in order to restore the vascular structure.
  
  POSTECH research team led by Professor Hyung Joon Cha and Dr. Tae Yoon Park of the Department of Chemical Engineering has developed the drug-delivering adhesive patch using two formulations – coacervate-based microparticles and light activation-based crosslinked hydrogels – that can be mass-produced. The team verified their effectiveness in tissue regeneration including neovascularization using a rat model for myocardial infarction and excisional wound model incapable of self-healing.
  
  Crosslinking Platelet-derived Growth Factor
  
  The research team produced microparticles by instantaneously encapsulating and crosslinking platelet-derived growth factor (PDGF) required for the late-phase angiogenesis during the process of forming coacervate microdroplets formed by the electrostatic interaction of MAP and hyaluronic acid.
  
  In addition, PDGF-loaded microparticles and the vascular endothelial growth factor (VEGF) required for initial-phase angiogenic factor are simultaneously encapsulated in a MAP-based crosslinked hydrogel, spatially separated and mounted the two factors easily and quickly.
  
  Adheres to Uneven Curved Surfaces
  
  This effective novel angiogenesis-inducing platform showed that PDGF was secreted and delivered 1.9 times later in time despite its smaller size than VEGF. In addition, the team confirmed that the platform allows crosslinking to occur instantaneously so that it can easily adhere even to uneven curved surfaces.
  
  “We have developed a new platform that can efficiently deliver angiogenic factors spatiotemporally by using the formulation property of MAP, an original biomaterial,” remarked Professor Hyung Joon Cha who has long devoted himself to studying the MAP. “It is of great significance that we have confirmed the functional recovery beyond effective neovascularization by applying it to actual animal model of myocardial infarction and severely damaged skin model.”
  
  “It will be successfully applicable to chronic and ischemic diseases in a similar environment.” He added eagerly, “This platform can play a key role in the neovascularization treatment market as it uses biocompatible biomaterials that are harmless to the human body.”
  
  The MAP-based hydrogel and coacervate liquid microdroplets fabrication technology have undergone a technology transfer to Nature Gluetech Co., Ltd. and is currently being commercialized.
  • 标签:
相关阅读

本站所有信息与内容,版权归原作者所有。网站中部分新闻、文章来源于网络或会员供稿,如读者对作品版权有疑议,请及时与我们联系,电话:025-85303363 QQ:2402955403。文章仅代表作者本人的观点,与本网站立场无关。转载本站的内容,请务必注明"来源:林中祥胶粘剂技术信息网(www.adhesive-lin.com)".

网友评论

©2015 南京爱德福信息科技有限公司   苏ICP备10201337 | 技术支持:建站100

客服

客服
电话

1

手机:18114925746

客服
邮箱

565052751@qq.com

若您需要帮助,您也可以留下联系方式

发送邮箱

扫二
维码

微信二维码