加载中...

点击这里给我发消息

QQ群:417857029

新产品·新技术信息

学者利用微生物制造出胶粘剂用乙烯

来源:specialchem2020年09月17日

阅读次数:

  Researchers discovered a new microbial pathway to produce ethylene, providing a potential avenue for bio-manufacturing a common component of adhesives, plastics, coolants and other everyday products. The discovery sheds light on production of ethylene in anaerobic, or oxygen-deprived, soils and points to potential paths. The study also outlines a previously unknown way bacteria generate methane, a powerful greenhouse gas.
  
  Scientists Uses Bacteria to Bio-manufacture Ethylene for Adhesives
  
  Up-scaling the Sulfur-scavenging Bacteria’s Metabolic Process
  
  The research team at the Department of Energy’s Oak Ridge National Laboratory and Ohio State University, found that ethylene and methane are byproducts of a bacterial process that makes methionine, an amino acid necessary for building proteins. When their environment is anaerobic and low in sulfur, bacteria are forced to scavenge sulfur from cellular waste products, triggering this new pathway.
  
  “For about a decade, researchers have studied the biological production of ethylene through a different mechanism that occurs in oxygenated environments,” said Ohio State research scientist Justin North. “There is a technical hurdle to scaling up that process as ethylene and oxygen mixed at industrial scales could be explosive. This new anaerobic pathway clears that hurdle, but there is still work to do in scaling it up.”
  
  The research began at Ohio State where Robert Tabita leads an ongoing study of carbon fixation and nitrogen and sulfur metabolism in photosynthetic bacteria. As part of Tabita’s team, North decided to measure the gasses being consumed and emitted by Rhodospirillum rubrum and other microbes in the same family when they were starved for sulfur. He was surprised to detect ethylene.
  
  The team noticed that the bacteria are producing hydrogen and consuming carbon dioxide but are also making copious amounts of ethylene gas.
  
  North and his Ohio State colleagues studied this new metabolic process using radioactive compounds to track the precursors and the production of methionine and ethylene in microbes. But a different type of analytical biotechnology was needed to make the critical link between the pathway and the proteins called enzymes that drive it.
  
  Characterizing Proteomes of Microbial Systems
  
  Tabita reached out to Bob Hettich, who leads the Biological Mass Spectrometry Group at ORNL, for a comparative analysis of the collection of proteins, called proteomes, present in these photosynthetic bacteria under two different scenarios: low-sulfur, ethylene-producing conditions and high-sulfur, non-ethylene-producing conditions.
  
  Hettich’s group has developed an approach to characterize the proteomes of microbial systems using mass spectrometry, a technique that accurately measures the masses and fragmentation pathways of different molecules and provides details on structure and composition. Hettich and Weili Xiong, an ORNL postdoctoral researcher, identified thousands of proteins from the low- and high-sulfur systems and analyzed their comparative abundances to pinpoint a handful of proteins for further characterization.
  
  The data showed a family of nitrogenase-like proteins that were almost 50 times more abundant in the low-sulfur, ethylene-producing samples. Some iron- and sulfur-related proteins also increased in abundance when sulfur was scarce, pointing to a possible new pathway for sulfur metabolism.
  
  These data were surprising as nitrogenase-like proteins are grouped in gene annotations with nitrogenases that have similar DNA sequences and are known to convert atmospheric nitrogen to ammonia. This nitrogen fixation process is essential to life on earth and has been studied extensively. Given their name, these nitrogenase-like proteins are not ones the scientists would have guessed play a role in sulfur metabolism.
  
  Manipulation of Bacterial Genome
  
  With these crucial proteome data, Ohio State researchers and colleagues at Colorado State University and Pacific Northwest National Laboratory ran a series of experiments manipulating the bacterial genome to include or remove the gene cluster Rru_A0793-Rru_A0796. The gene removal and replacement turned off and on the ethylene production like a switch, confirming that the genes and the resulting enzyme they code for are essential to this metabolic pathway.
  
  The nitrogenase-like enzymes cleave carbon-sulfur bonds to reduce 2-(methylthio)ethanol into a precursor for making methionine. This pathway produces ethylene as a byproduct. The research team found that if the source of sulfur is changed to dimethyl sulfide, the most abundant volatile organic sulfur compound, bacteria use it in their methionine pathway and produce methane as a byproduct.
  
  In addition to a potential biological means of producing ethylene for use in adhesives, plastics and other industrial products, these findings could inform treatments for crops in waterlogged, anaerobic soils to prevent damage from an overabundance of ethylene. In the right amounts, ethylene is an important plant hormone that helps plants grow, develop leaves, roots and ripen fruits. The study creates a host of new scientific questions, including whether this pathway is involved in interactions between plants and microbes.
  • 标签:
相关阅读

本站所有信息与内容,版权归原作者所有。网站中部分新闻、文章来源于网络或会员供稿,如读者对作品版权有疑议,请及时与我们联系,电话:025-85303363 QQ:2402955403。文章仅代表作者本人的观点,与本网站立场无关。转载本站的内容,请务必注明"来源:林中祥胶粘剂技术信息网(www.adhesive-lin.com)".

网友评论

©2015 南京爱德福信息科技有限公司   苏ICP备10201337 | 技术支持:建站100

客服

客服
电话

1

手机:18114925746

客服
邮箱

565052751@qq.com

若您需要帮助,您也可以留下联系方式

发送邮箱

扫二
维码

微信二维码